Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Front Med (Lausanne) ; 11: 1276420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654839

RESUMO

Drug-induced interstitial lung disease (ILD) is crucial to detect early to achieve the best treatment outcome. Optimally, non-invasive imaging biomarkers can be used for early detection of disease progression and treatment follow-up. Therefore, reliable in vivo models are warranted in new imaging biomarker development to accelerate better-targeted treatment options. Single-dose bleomycin models have, for a long time, served as a reference model in fibrosis and lung injury research. Here, we aimed to use a clinically more relevant animal model by systemic exposure to bleomycin and assessing disease progression over time by combined magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging. Methods: C57BL/6 mice received bleomycin (i.p. 35iU/kg) or saline as control twice per week for 4 weeks. Mice were monitored until 2 weeks after cessation of bleomycin administration (w4 + 1 and w4 + 2), referred to as the resting period. MRI scans were performed in weeks 3 and 4 and during the resting weeks. [18F]FDG-PET was performed at the last week of dosing (w4) and 2 weeks after the last dosing (w4 + 2). Lung tissue sections were stained with Masson's trichrome and evaluated by modified Ashcroft scoring. Lung volume and lesion volumes were assessed using MRI, as well as 3D mapping of the central airways. Results and discussion: Bleomycin-challenged mice showed increased lung weights (p < 0.05), while total lung volume was unchanged (w4 and onward). Histology analysis demonstrated fibrotic lesions emanating from the distal parts of the lung. Fibrosis progression was visualized by MRI with significantly increased high signal in bleomycin-exposed lungs compared to controls (p < 0.05). In addition, a significant increase in central airway diameter (p < 0.01) was displayed in bleomycin-exposed animals compared to controls and further continued to dilate as the disease progressed, comparing the bleomycin groups over time (p < 0.05-0.001). Lung [18F]FDG uptake was significantly elevated in bleomycin-exposed mice compared to controls (p < 0.05). Conclusion: Non-invasive imaging displayed progressing lesions in the lungs of bleomycin-exposed mice, using two distinct MRI sequences and [18F]FDG-PET. With observed fibrosis progression emanating from distal lung areas, dilation of the central airways was evident. Taken together, this chronic bleomycin-exposure model is translationally more relevant for studying lung injury in ILD and particularly in the context of DIILD.

2.
Acta Otolaryngol ; 143(2): 127-133, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36735299

RESUMO

BACKGROUND: Diabetes is associated with inner ear dysfunction. Furthermore, C57BL/6J mice fed high fat diet (HFD), a model for insulin resistance and diabetes, develop endolymphatic hydrops (EH). AIM: Evaluate if betahistine, spironolactone (aldosterone antagonist) and empagliflozin (sodium -glucose cotransporter2 inhibitor) can prevent EH induced by HFD and explore potential mechanisms. METHODS: C57BL/6J mice fed HFD were treated with respective drug. The size of the endolymphatic fluid compartment was measured using contrast enhanced MRI. Secondarily, mice treated with cilostamide, a phosphodiesterase3 inhibitor, to induce EH and HEI-OC1 auditory cells were used to study potential cellular mechanisms of betahistine. RESULTS: HFD-induced EH was prevented by betahistine but not by spironolactone and empagliflozin. Betahistine induced phosphorylation of protein kinaseA substrates but did not prevent cilostamide-induced EH. CONCLUSIONS: Betahistine prevents the development of EH in mice fed HFD, most likely not involving pathways downstream of phosphodiesterase3, an enzyme with implications for dysfunction in diabetes. The finding that spironolactone did not prevent HFD-induced EH suggests different mechanisms for EH induction/treatment since spironolactone prevents EH induced by vasopressin, as previously observed. SIGNIFICANCE: This further demonstrates that independent mechanisms can cause hydropic inner ear diseases which suggests different therapeutic approaches and emphazises the need for personalized medicine.


Assuntos
Diabetes Mellitus , Hidropisia Endolinfática , Resistência à Insulina , Animais , Camundongos , beta-Histina/efeitos adversos , Espironolactona/farmacologia , Espironolactona/uso terapêutico , Camundongos Endogâmicos C57BL , Hidropisia Endolinfática/tratamento farmacológico , Hidropisia Endolinfática/etiologia , Hidropisia Endolinfática/prevenção & controle , Imageamento por Ressonância Magnética
3.
Eur J Radiol Open ; 8: 100323, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33532518

RESUMO

BACKGROUND AND AIMS: Histopathology is the gold standard for analysis of atherosclerotic plaques but has drawbacks due to the destructive nature of the method. Ex vivo MRI is a non-destructive method to image whole plaques. Our aim was to use quantitative high field ex vivo MRI to classify plaque components, with histology as gold standard. METHODS: Surgically resected carotid plaques from 12 patients with recent TIA or stroke were imaged at 11.7 T MRI. Quantitative T1/T2* mapping sequences and qualitative T1/T2* gradient echo sequences with voxel size of 30 × 30 × 60 µm3 were obtained prior to histological preparation, sectioning and staining for lipids, inflammation, hemorrhage, and fibrous tissue. Regions of interest (ROI) were selected based on the histological staining at multiple levels matched between histology and MRI. The MRI parameters of each ROI were then analyzed with quadratic discriminant analysis (QDA) for classification. RESULTS: A total of 965 ROIs, at 70 levels matched between histology and MRI, were registered based on histological staining. In the nine plaques where three or more plaque components were possible to co-localize with MRI, the mean degree of misclassification by QDA was 16.5 %. One of the plaques contained mostly fibrous tissue and lipids and had no misclassifications, and two plaques mostly contained fibrous tissue. QDA generally showed good classification for fibrous tissue and lipids, whereas plaques with hemorrhage and inflammation had more misclassifications. CONCLUSION: 11.7 T ex vivo high field MRI shows good visual agreement with histology in carotid plaques. T1/T2* maps analyzed with QDA is a promising non-destructive method to classify plaque components, but with a higher degree of misclassifications in plaques with hemorrhage or inflammation.

4.
J Clin Med ; 9(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218212

RESUMO

Non-invasive imaging biomarkers (IBs) are warranted to enable improved diagnostics and follow-up monitoring of interstitial lung disease (ILD) including drug-induced ILD (DIILD). Of special interest are IB, which can characterize and differentiate acute inflammation from fibrosis. The aim of the present study was to evaluate a PET-tracer specific for Collagen-I, combined with multi-echo MRI, in a rat model of DIILD. Rats were challenged intratracheally with bleomycin, and subsequently followed by MRI and PET/CT for four weeks. PET imaging demonstrated a significantly increased uptake of the collagen tracer in the lungs of challenged rats compared to controls. This was confirmed by MRI characterization of the lesions as edema or fibrotic tissue. The uptake of tracer did not show complete spatial overlap with the lesions identified by MRI. Instead, the tracer signal appeared at the borderline between lesion and healthy tissue. Histological tissue staining, fibrosis scoring, lysyl oxidase activity measurements, and gene expression markers all confirmed establishing fibrosis over time. In conclusion, the novel PET tracer for Collagen-I combined with multi-echo MRI, were successfully able to monitor fibrotic changes in bleomycin-induced lung injury. The translational approach of using non-invasive imaging techniques show potential also from a clinical perspective.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32238362

RESUMO

OBJECTIVE: The mechanisms underlying the association between diabetes and inner ear dysfunction are not known yet. The aim of the present study is to evaluate the impact of obesity/insulin resistance on inner ear fluid homeostasis in vivo, and to investigate whether the organ of Corti could be a target tissue for insulin signaling using auditory House Ear Institute-Organ of Corti 1 (HEI-OC1) cells as an in vitro model. METHODS: High fat diet (HFD) fed C57BL/6J mice were used as a model to study the impact of insulin resistance on the inner ear. In one study, 12 C57BL/6J mice were fed either control diet or HFD and the size of the inner ear endolymphatic fluid compartment (EFC) was measured after 30 days using MRI and gadolinium contrast as a read-out. In another study, the size of the inner ear EFC was evaluated in eight C57BL/6J mice both before and after HFD feeding, with the same techniques. HEI-OC1 auditory cells were used as a model to investigate insulin signaling in organ of Corti cells. RESULTS: HFD feeding induced an expansion of the EFC in C57BL/6J mice, a hallmark of inner ear dysfunction. Insulin also induced phosphorylation of protein kinase B (PKB/Akt) at Ser473, in a PI3-kinase-dependent manner. The phosphorylation of PKB was inhibited by isoproterenol and IBMX, a general phosphodiesterase (PDE) inhibitor. PDE1B, PDE4D and the insulin-sensitive PDE3B were found expressed and catalytically active in HEI-OC1 cells. Insulin decreased and AICAR, an activator of AMP-activated protein kinase, increased the phosphorylation at the inhibitory Ser79 of acetyl-CoA carboxylase, the rate-limiting enzyme in de novo lipogenesis. Furthermore, the activity of hormone-sensitive lipase, the rate-limiting enzyme in lipolysis, was detected in HEI-OC1 cells. CONCLUSIONS: The organ of Corti could be a target tissue for insulin action, and inner ear insulin resistance might contribute to the association between diabetes and inner ear dysfunction.


Assuntos
Orelha Interna , Resistência à Insulina , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1 , Insulina , Camundongos , Camundongos Endogâmicos C57BL , Órgão Espiral
6.
Acta Otolaryngol ; 139(8): 685-691, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31145014

RESUMO

Background: The exact pathophysiological mechanism(s) underlying endolymphatic hydrops (EH) remain elusive. We have previously shown that chronic administration of vasopressin and inhibitors of the cAMP/cGMP degrading enzymes (PDE3, PDE4, PDE5) results in the development of EH to mice. Aims/objectives: Evaluate the ability of spironolactone, an aldosterone antagonist, to prevent EH, when induced by different pathways. Material and methods: Mice were treated for 4 weeks with vasopressin, the PDE3 inhibitor cilostamide and the PDE4 inhibitor rolipram in the presence or absence of spironolactone. EH was assessed using high resolution 9.4T MRI. The expression of proteins in human saccule sensory epithelium was studied with immunohistochemistry. Results: Spironolactone prevents EH induced by vasopressin and rolipram, but not hydrops induced by cilostamide. The aldosterone target ENaC and the mineralocorticoid receptor were expressed in the human saccule sensory epithelium. Conclusions: The effect of spironolactone on EH appears to be pathway-dependent and may provide explanations why certain drugs may be effective in some patients with hydropic ear disease while not in others. Significance: Extrapolating this finding to the clinic supports that a personalized medicine approach is probably necessary in the treatment of diseases involving EH, as different pathways may be needed to be targeted for treatment.


Assuntos
Hidropisia Endolinfática/prevenção & controle , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Espironolactona/uso terapêutico , Animais , Modelos Animais de Doenças , Hidropisia Endolinfática/induzido quimicamente , Hidropisia Endolinfática/diagnóstico por imagem , Feminino , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos CBA , Quinolonas , Rolipram , Vasopressinas
7.
Sci Rep ; 7(1): 4824, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684867

RESUMO

Current methods for intra-surgical guidance to localize metastases at cancer surgery are based on radioactive tracers that cause logistical challenges. We propose the use of a novel ultrasound-based method, magnetomotive ultrasound (MMUS) imaging that employ a nanoparticle-based contrast agent that also may be used for pre-operative PET/MRI imaging. Since MMUS is radiation free, this eliminates the dependence between pre- and intra-operative imaging and the radiation exposure for the surgical staff. This study investigates a hypothetical clinical scenario of pre-operative PET imaging, combined with intra-operative MMUS imaging, implemented in a sentinel lymph node (SLN) rat model. At one-hour post injection of 68Ga-labelled magnetic nanoparticles, six animals were imaged with combined PET/CT. After two or four days, the same animals were imaged with MMUS. In addition, ex-vivo MRI was used to evaluate the amount of nanoparticles in each single SLN. All SLNs were detectable by PET. Four out of six SLNs could be detected with MMUS, and for these MMUS and MRI measurements were in close agreement. The MRI measurements revealed that the two SLNs undetectable with MMUS contained the lowest nanoparticle concentrations. This study shows that MMUS can complement standard pre-operative imaging by providing bedside real-time images with high spatial resolution.


Assuntos
Meios de Contraste/química , Radioisótopos de Gálio/química , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Linfonodo Sentinela/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Ultrassonografia/métodos , Animais , Meios de Contraste/farmacocinética , Feminino , Compostos Férricos/química , Radioisótopos de Gálio/farmacocinética , Humanos , Imageamento por Ressonância Magnética/instrumentação , Nanopartículas de Magnetita/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/instrumentação , Ratos , Ratos Wistar , Biópsia de Linfonodo Sentinela , Coloração e Rotulagem/métodos , Tomografia Computadorizada por Raios X/instrumentação , Ultrassonografia/instrumentação
8.
Acta Otolaryngol ; 137(1): 8-15, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27685753

RESUMO

CONCLUSION: The data indicate important roles for phosphodiesterase (PDE) 3, 4, 5, and related cAMP and cGMP pools in the regulation of inner ear fluid homeostasis. Thus, dysfunction of these enzymes might contribute to pathologies of the inner ear. OBJECTIVE: The mechanisms underlying endolymphatic hydrops, a hallmark of inner ear dysfunction, are not known in detail; however, altered balance in cAMP and cGMP signaling systems appears to be involved. Key components of these systems are PDEs, enzymes that modulate the amplitude, duration, termination, and specificity of cAMP and cGMP signaling. METHOD: To evaluate the role of PDE3, 4, and 5 and associated cAMP and cGMP pools in inner ear function, the effect of cilostamide (PDE3 inhibitor), rolipram (PDE4 inhibitor), and sildenafil (PDE5 inhibitor), administrated via mini-osmotic pumps, on mouse inner ear fluid homeostasis was evaluated using 9.4T in vivo MRI in combination with intraperitoneally administered Gadolinium contrast. Also, using human saccule as a model, the expression of PDEs and related signaling molecules and targets was studied using immunohistochemistry. RESULTS: PDE3, PDE4, as well as PDE5 inhibitors resulted in the development of endolymphatic hydrops. Furthermore, PDE3B, PDE4D, and some related signaling components were shown to be expressed in the human saccule.


Assuntos
Hidropisia Endolinfática/enzimologia , Inibidores de Fosfodiesterase , Diester Fosfórico Hidrolases/metabolismo , Sáculo e Utrículo/enzimologia , Animais , Hidropisia Endolinfática/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Camundongos Endogâmicos CBA , Quinolonas , Rolipram , Citrato de Sildenafila
9.
Mol Cancer Ther ; 15(10): 2455-2464, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27474147

RESUMO

A typical obstacle to cancer therapy is the limited distribution of low molecular weight anticancer drugs within the carcinoma tissue. In experimental carcinoma, imatinib (STI571) increases efficacy of synchronized chemotherapy, reduces tumor interstitial fluid pressure, and increases interstitial fluid volume. STI571 also increases the water-perfusable fraction in metastases from human colorectal adenocarcinomas. Because the mechanism(s) behind these effects have not been fully elucidated, we investigated the hypothesis that STI571 alters specific properties of the stromal extracellular matrix. We analyzed STI571-treated human colorectal KAT-4/HT-29 experimental carcinomas, known to have a well-developed stromal compartment, for solute exchange and glycosaminoglycan content, as well as collagen content, structure, and synthesis. MRI of STI571-treated KAT-4/HT-29 experimental carcinomas showed a significantly increased efficacy in dynamic exchanges of solutes between tumor interstitium and blood. This effect was paralleled by a distinct change of the stromal collagen network architecture, manifested by a decreased average collagen fibril diameter, and increased collagen turnover. The glycosaminoglycan content was unchanged. Furthermore, the apparent effects on the stromal cellular composition were limited to a reduction in an NG2-positive stromal cell population. The current data support the hypothesis that the collagen network architecture influences the dynamic exchanges of solutes between blood and carcinoma tissue. It is conceivable that STI571 reprograms distinct nonvascular stromal cells to produce a looser extracellular matrix, ultimately improving transport characteristics for traditional chemotherapeutic agents. Mol Cancer Ther; 15(10); 2455-64. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Carcinoma/metabolismo , Colágeno/metabolismo , Líquido Extracelular/metabolismo , Mesilato de Imatinib/farmacologia , Agregados Proteicos , Inibidores de Proteínas Quinases/farmacologia , Animais , Carcinoma/tratamento farmacológico , Carcinoma/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Células Estromais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Neurochem ; 137(5): 806-19, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26811128

RESUMO

In this study, we used proton-localized spectroscopy ((1) H-MRS) for the acquisition of the neurochemical profile longitudinally in a novel rat model of human wild-type alpha-synuclein (α-syn) over-expression. Our goal was to find out if the increased α-syn load in this model could be linked to changes in metabolites in the frontal cortex. Animals injected with AAV vectors encoding for human α-syn formed the experimental group, whereas green fluorescent protein expressing animals were used as the vector-treated control group and a third group of uninjected animals were used as naïve controls. Data were acquired at 2, 4, and 8 month time points. Nineteen metabolites were quantified in the MR spectra using LCModel software. On the basis of 92 spectra, we evaluated any potential gender effect and found that lactate (Lac) levels were lower in males compared to females, while the opposite was observed for ascorbate (Asc). Next, we assessed the effect of age and found increased levels of GABA, Tau, and GPC+PCho. Finally, we analyzed the effect of treatment and found that Lac levels (p = 0.005) were specifically lower in the α-syn group compared to the green fluorescent protein and control groups. In addition, Asc levels (p = 0.05) were increased in the vector-injected groups, whereas glucose levels remained unchanged. This study indicates that the metabolic switch between glucose-lactate could be detectable in vivo and might be modulated by Asc. No concomitant changes were found in markers of neuronal integrity (e.g., N-acetylaspartate) consistent with the fact that α-syn over-expression in cortical neurons did not result in neurodegeneration in this model. We acquired the neurochemical profile longitudinally in a rat model of human wild-type alpha-synuclein (α-syn) over-expression in cortical neurons. We found that Lactate levels were reduced in the α-syn group compared to the control groups and Ascorbate levels were increased in the vector-injected groups. No changes were found in markers of neuronal integrity consistent with the fact that α-syn over-expression did not result in frank neurodegeneration.


Assuntos
Córtex Cerebral/metabolismo , Dependovirus , Espectroscopia de Ressonância Magnética/métodos , Neurônios/metabolismo , alfa-Sinucleína/biossíntese , Animais , Animais Recém-Nascidos , Córtex Cerebral/citologia , Feminino , Regulação da Expressão Gênica , Humanos , Hidrogênio , Estudos Longitudinais , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley
11.
Hear Res ; 330(Pt A): 119-24, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26048336

RESUMO

From histopathological specimens, endolymphatic hydrops has been demonstrated in association with inner ear disorders. Recent studies have observed findings suggestive of hydrops using MRI in humans. Previous studies suggest that vasopressin may play a critical role in endolymph homeostasis and may be involved in the development of Ménière's disease. In this study we evaluate the effect of vasopressin administration in vivo in longitudinal studies using two mouse strains. High resolution MRI at 9.4 T in combination with intraperitoneally delivered Gadolinium contrast, was performed before and after chronic subcutaneous administration of vasopressin via mini-osmotic pumps in the same mouse. A development of endolymphatic hydrops over time could be demonstrated in C57BL6 mice (5 mice, 2 and 4 weeks of administration) as well as in CBA/J mice (4 mice, 2 weeks of administration; 6 mice, 3 and 4 weeks of administration). In most C57BL6 mice hydrops developed first after more than 2 weeks while CBA/J mice had an earlier response. These results may suggest an in vivo model for studying endolymphatic hydrops and corroborates the future use of MRI as a tool in the diagnosis and treatment of inner ear diseases, such as Ménière's disease. MRI may also be developed as a critical tool in evaluating inner ear homeostasis in genetically modified mice, to augment the understanding of human disease.


Assuntos
Orelha Interna/efeitos dos fármacos , Hidropisia Endolinfática/induzido quimicamente , Imageamento por Ressonância Magnética , Vasopressinas/química , Animais , Meios de Contraste/química , Modelos Animais de Doenças , Orelha Interna/fisiopatologia , Edema , Hidropisia Endolinfática/fisiopatologia , Feminino , Gadolínio/química , Homeostase , Infusões Parenterais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Osmose
12.
Artigo em Inglês | MEDLINE | ID: mdl-25073135

RESUMO

Detection and removal of sentinel lymph nodes (SLN) is important in the diagnosis and treatment of cancer. The SLN is the first regional lymph node draining the primary tumor, and if the cancer has spread, it is most likely to find metastases in the SLN. In this study, we have for the first time been able to image the very same contrast agent, superparamagnetic iron oxide nanoparticles (SPIO-NPs), in rat SLNs by using both our frequency- and phase-gated magnetomotive ultrasound (MMUS) algorithm and conventional magnetic resonance imaging (MRI); MMUS post mortem, MRI in vivo. For both higher NP-concentration and smaller NPs, we found that the MMUS data showed a larger magnetomotive displacement (1.56 ± 0.43 and 1.94 ± 0.54 times larger, respectively) and that the MR-images were affected to a higher degree. The MMUS displacement also increased with lower excitation frequency (1.95 ± 0.64 times larger for 5 Hz compared with 15 Hz) and higher excitation voltage (2.95 ± 1.44 times larger for 30 V compared with 10 V). The results show that MMUS has potential to be used as bedside guidance during SLN surgery, imaging the same particles that were used in prior staging with other imaging techniques.


Assuntos
Linfonodos/química , Linfonodos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/análise , Animais , Feminino , Linfonodos/metabolismo , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/química , Ratos , Ratos Wistar , Ultrassonografia
13.
Nanomedicine ; 10(5): 1089-95, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24502988

RESUMO

This study investigates the retention of different sized ultra-small superparamagnetic iron oxide nanoparticles (USPIOs) in lymph nodes of healthy rats, after subcutaneous injection. Three distinct sizes (15, 27 and 58 nm) of USPIOs were synthesized by only varying the thickness of the polymer coating surrounding the 10 nm cores. Particles were injected on the dorsal side of the hind paw of rats and the uptake in the popliteal, inguinal and iliac lymph nodes was monitored. The data reveal that the 15 nm particle accumulates more rapidly and to a higher amount in the first lymph node than the two larger particles. A clear contrast between the first and second lymph nodes could be detected indicating that even the rather small difference in particle size (15-58 nm) tested has significant effects on the retention of USPIOs in the lymph nodes. FROM THE CLINICAL EDITOR: From the Clinical Editor: In this study, the size-dependence of USPIO particles is studied from the standpoint of their accumulation characteristics in lymph nodes. The authors conclude that the smaller particles accumulated faster and at a higher concentration than the two larger sizes studied.


Assuntos
Linfonodos/patologia , Imagem Multimodal/métodos , Nanoestruturas , Animais , Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/diagnóstico , Meios de Contraste , Glioma/diagnóstico , Ratos , Análise Espectral Raman/métodos
14.
Curr Top Behav Neurosci ; 11: 169-98, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22076698

RESUMO

Magnetic resonance spectroscopy (MRS) is a non-invasive technique that can be used to detect and quantify multiple metabolites. This chapter will review some of the applications of MRS to the study of brain functions. Typically, (1)H-MRS can detect metabolites reflecting neuronal density and integrity, markers of energy metabolism or inflammation, as well as neurotransmitters. The complexity of the proton spectrum has however led to the development of other nuclei-based methods, such as (31)P- and (13)C-MRS, which offer a broader chemical shift range and therefore can provide more detailed information at the level of single metabolites. The versatility of MRS allows for a wide range of clinical applications, of which neurodegeneration is an interesting target for spectroscopy-based studies. In particular, MRS can identify patterns of altered brain chemistry in Alzheimer's patients and can help establish differential diagnosis in Alzheimer's and Parkinson's diseases. Using MRS to follow less abundant neurotransmitters is currently out of reach and will most likely depend on the development of methods such as hyperpolarization that can increase the sensitivity of detection. In particular, dynamic nuclear polarization has opened up a new and exciting area of medical research, with developments that could greatly impact on the real-time monitoring of in vivo metabolic processes in the brain.


Assuntos
Doença de Alzheimer/patologia , Ácido Aspártico/análogos & derivados , Encéfalo/metabolismo , Espectroscopia de Ressonância Magnética , Doença de Parkinson/patologia , Ácido Aspártico/metabolismo , Humanos , Isótopos , Prótons
15.
Int J Cancer ; 127(3): 729-36, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19960440

RESUMO

Powerful analytical tools are vital for characterizing the complex molecular changes underlying oncogenesis and cancer treatment. This is particularly true, if information is to be collected in vivo by noninvasive approaches. In the recent past, hyperpolarized (13)C magnetic resonance (MR) spectroscopy has been employed to quickly collect detailed spectral information on the chemical fate of tracer molecules in different tissues at high sensitivity. Here, we report a preclinical study showing that alpha-ketoisocaproic acid (KIC) can be used to assess molecular signatures of tumors with hyperpolarized MR spectroscopy. KIC is metabolized to leucine by the enzyme branched chain amino acid transferase (BCAT), which is found upregulated in some tumors. BCAT is a putative marker for metastasis and a target of the proto-oncogene c-myc. Very different fluxes through the BCAT-catalyzed reaction can be detected for murine lymphoma (EL4) and rat mammary adenocarcinoma (R3230AC) tumors in vivo. EL4 tumors show a more than 7-fold higher hyperpolarized (13)C leucine signal relative to the surrounding healthy tissue. In R3230AC tumor on the other hand branched chain amino acid metabolism is not enhanced relative to surrounding tissues. The distinct molecular signatures of branched chain amino acid metabolism in EL4 and R3230AC tumors correlate well with ex vivo assays of BCAT activity.


Assuntos
Adenocarcinoma/metabolismo , Aminoácidos/metabolismo , Cetoácidos/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Adenocarcinoma/patologia , Animais , Biocatálise , Isótopos de Carbono , Linhagem Celular Tumoral , Feminino , Espectroscopia de Ressonância Magnética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Endogâmicos Lew , Transaminases/metabolismo
16.
J Biol Chem ; 284(52): 36077-36082, 2009 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-19861411

RESUMO

Mechanistic details of mammalian metabolism in vivo and dynamic metabolic changes in intact organisms are difficult to monitor because of the lack of spatial, chemical, or temporal resolution when applying traditional analytical tools. These limitations can be addressed by sensitivity enhancement technology for fast in vivo NMR assays of enzymatic fluxes in tissues of interest. We apply this methodology to characterize organ-specific short chain fatty acid metabolism and the changes of carnitine and coenzyme A pools in ischemia reperfusion. This is achieved by assaying acetyl-CoA synthetase and acetyl-carnitine transferase catalyzed transformations in vivo. The fast and predominant flux of acetate and propionate signal into acyl-carnitine pools shows the efficient buffering of free CoA levels. Sizeable acetyl-carnitine formation from exogenous acetate is even found in liver, where acetyl-CoA synthetase and acetyl-carnitine transferase activities have been assumed sequestered in different compartments. In vivo assays of altered acetate metabolism were applied to characterize pathological changes of acetate metabolism upon ischemia. Coenzyme pools in ischemic skeletal muscle are reduced in vivo even 1 h after disturbing muscle perfusion. Impaired mitochondrial metabolism and slow restoration of free CoA are corroborated by assays employing fumarate to show persistently reduced tricarboxylic acid (TCA) cycle activity upon ischemia. In the same animal model, anaerobic metabolism of pyruvate and tissue perfusion normalize faster than mitochondrial bioenergetics.


Assuntos
Ácidos Graxos/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Traumatismo por Reperfusão/metabolismo , Acetilcarnitina , Animais , Carnitina/metabolismo , Ciclo do Ácido Cítrico , Coenzima A/metabolismo , Coenzima A Ligases/metabolismo , Metabolismo Energético , Fumaratos/metabolismo , Camundongos , Especificidade de Órgãos
17.
Proc Natl Acad Sci U S A ; 103(30): 11270-5, 2006 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-16837573

RESUMO

The endogenous substance pyruvate is of major importance to maintain energy homeostasis in the cells and provides a window to several important metabolic processes essential to cell survival. Cell viability is therefore reflected in the metabolism of pyruvate. NMR spectroscopy has until now been the only noninvasive method to gain insight into the fate of pyruvate in the body, but the low NMR sensitivity even at high field strength has only allowed information about steady-state conditions. The medically relevant information about the distribution, localization, and metabolic rate of the substance during the first minute after the injection has not been obtainable. Use of a hyperpolarization technique has enabled 10-15% polarization of (13)C(1) in up to a 0.3 M pyruvate solution. i.v. injection of the solution into rats and pigs allows imaging of the distribution of pyruvate and mapping of its major metabolites lactate and alanine within a time frame of approximately 10 s. Real-time molecular imaging with MRI has become a reality.


Assuntos
Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Ácido Pirúvico/química , Animais , Sobrevivência Celular , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/instrumentação , Masculino , Modelos Biológicos , Ratos , Ratos Wistar , Suínos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...